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Emotions seem to have evolved to guide organisms and their 
conspecifics in their struggle for survival, and affective states 
are assumed to facilitate behavior that is adaptive to the cur-
rent situational context (Morris, 1992). In particular, it has 
been suggested that negative mood stimulates the processing 
of stimuli that have a negative valence and, therefore, deserve 
priority. Indeed, low pleasure levels seem to induce negative-
information biases in attention and memory. Although it has 
been suggested that these biases systematically change the 
way people cope with negative events (cf. Gendolla, 2000), it 
has yet to be demonstrated how affect may play this regulating 
role in cognitive-control adaptations.

The main function of cognitive control is to adapt the cogni-
tive system to situational demands. It has been proposed that this 
adaptation is driven by the detection of cognitive conflict (Bot-
vinick Braver, Barch, Carter, & Cohen, 2001). Evidence support-
ing this view comes from conflict tasks, such as the flanker task. 
Subjects respond more slowly to target information if distracting 
flanker information suggests a different response. On trials fol-
lowing this conflict, however, flanker interference is reduced 
(Egner, 2007; Gratton, Coles, & Donchin, 1992), which indicates 
that facing conflict enhances control (Botvinick et al., 2001).

Numerous studies have shown that low-pleasure affect 
facilitates neural conflict monitoring (e.g., Luu, Collins, & 
Tucker, 2000). They illustrate that moods that are congruent 

with the negative valence inherent to conflict (Botvinick, 
2007) facilitate conflict registration (cf. Rusting, 1998). Given 
that conflict registration is important for tuning goal-directed 
behavior (cf. Kerns et al., 2004), affective states that prioritize 
conflict processing should also strengthen behavioral adapta-
tions to cognitive conflict. We therefore predicted that people 
in a low-pleasure mood would adapt more strongly to cogni-
tive conflict, and thus would be more likely to recruit control, 
than people in a high-pleasure mood. Some authors have pos-
tulated that, independently of pleasure, changes in arousal 
level may also influence conflict adaptation by altering the 
signal-to-noise ratio of conflict information (Verguts & Note-
baert, 2009). If so, conflict-driven cognitive control may be 
influenced by the arousal level of the current affective state.1

Given that pleasure and arousal are the two fundamental 
dimensions on which mood is assumed to vary (Yik, Russell, & 
Barrett, 1999), we investigated four groups of participants who 
underwent a standard mood-induction manipulation before per-
forming a conflict-evoking flanker task. Each mood group occu-
pied one of the four quadrants derived by crossing the dimensions 
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of pleasure and arousal (see Fig. 1; cf. Jefferies, Smilek, Eich, & 
Enns, 2008). The four derived moods that were induced were 
anxiety (low pleasure, high arousal), sadness (low pleasure, low 
arousal), calmness (high pleasure, low arousal), and happiness 
(high pleasure, high arousal). We predicted stronger conflict-
driven adaptation effects (i.e., reductions of flanker-induced 
interference after conflict trials) for participants with low plea-
sure levels (anxious and sad participants) than for participants 
with high pleasure levels (calm and happy participants).

Method
Participants and design

Ninety-eight students participated either for payment or for 
course credits (age range: 18–30 years; 24 males, 74 females; 

11 left-handed). They were randomly assigned to one of the 
four mood-induction groups: anxious, sad, calm, and happy. 
Data from 7 subjects were excluded from analyses because of 
response omissions on more than 20% of the trials (n = 2), 
chance-level task performance (n = 3), or noncompliance with 
instructions (n = 2). All subjects completed a mood induction, 
the flanker task, and a manual color-word Stroop task.

Mood induction and assessment
We used a standard mood-induction procedure that combines 
music with imagination and is known to induce reliable mood 
changes (Eich, Ng, Macaulay, Percy, & Grebneva, 2007). Sub-
jects used headphones to listen to specific classical music 
samples whose efficacy in inducing the intended moods was 
validated by previous research (Jefferies et al., 2008). They 
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Fig. 1.  Conflict-adaptation effects on the flanker task as a function of mood-induction group. Groups were defined by a crossing of 
the pleasure (horizontal) and arousal (vertical) dimensions of mood. The graphs show the mean interference effect (reaction time on 
incompatible trials minus reaction time on compatible trials) for flanker trials following no-conflict trials (i.e., the previous trial was 
compatible) and flanker trials following conflict trials (i.e., the previous trial was incompatible), separately for each mood-induction group. 
Error bars indicate standard errors.
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were instructed to develop a particular mood by imagining and 
writing about a mood-appropriate event in detail; they were 
free to either focus on a written vignette they were given or  
to recall a similar event from their past. Music continued to 
play throughout the remainder of the experiment. To check  
the induction manipulation, we asked subjects to rate their  
mood on a 9 × 9 Pleasure × Arousal grid (Russell, Weis, & 
Mendelsohn, 1989) with values ranging from –4 to 4. Subjects 
were instructed to rate their mood whenever the grid appeared 
on the computer monitor during the experiment.

Flanker task
We used a computerized version of the classic flanker task 
(Eriksen & Eriksen, 1974) in which, on each trial, a central tar-
get stimulus is vertically flanked by four response-compatible 
or four response-incompatible stimuli, two on either side. 
Dutch color words were used as targets and flankers, and were 
randomly drawn from one of two sets of words (“brown,” 
“gray,” “yellow,” and “red” or “purple,” “green,” “orange,” 
and “blue”); the other set of words was used for the Stroop 
task, with assignment of word set to task counterbalanced 
within mood groups. Subjects were instructed to respond using 
their index fingers, pressing a key with their left index finger 
when the central target was either of two specific words and 
pressing a different key with their right index finger when the 
target was either of the other two words (stimulus-response 
mapping was counterbalanced within mood groups). A 
reminder of the stimulus-response mapping was shown for  
15 s before the start of each of the two blocks of 72 trials.

All trials started with a fixation cross (randomly varying 
duration of 800, 1,000, or 1,100 ms), followed by the stimulus, 
which was presented until response registration, or for a maxi-
mum of 1,500 ms. In half of the trials, the target and flanker 
stimuli called for different responses (response-incompatible 
condition: I), whereas in the other half, physically identical 
target and flanker stimuli called for the same response 
(response-compatible condition: C). All trials were presented 
in an unconstrained random sequence. Stimuli appeared in 
black, lowercase Arial bold font and were presented on a gray 
background. The stimulus array was 3.5 cm wide and 5.4 cm 
high. Participants viewed the stimuli on a 17-in. monitor from 
a distance of approximately 60 cm.

Procedure
After giving informed consent, subjects were instructed about 
the mood ratings and told how to perform the flanker and 
Stroop tasks.2 Instructions for both tasks emphasized both 
speed and accuracy. Following 16 practice trials and a 10-min 
mood induction, subjects performed a block of 72 trials for 
each task. After a short, 3-min mood booster, another block of 
each task was presented. The order of tasks was counterbal-
anced within mood conditions. Following completion of a 
questionnaire in which subjects were asked to rate how 

genuinely they had experienced their mood (9-point scale), 
subjects were instructed to return to baseline mood levels. 
Negative-mood subjects received a candy to facilitate return to 
their baseline mood. During the experiment, nine mood rat-
ings were obtained at the following time points: at the begin-
ning of the experiment (baseline), following the practice trials, 
halfway through and at the end of the mood-induction proce-
dure, after the first half of the tasks, following the mood 
booster, after the second half of the tasks, following the ques-
tionnaire, and at the end of the experiment.

Data analysis
Analyses of variance were used to test our hypotheses. Arousal 
and pleasure grid ratings served as a mood-manipulation 
check. We analyzed absolute reaction times (RTs) and error 
rates, as well as interference effects (I minus C), on correct 
trials as a function of mood condition. Standard conflict-
adaptation effects, for both RTs and error rates, were calcu-
lated by subtracting the interference effect following a correct 
conflict, or incompatible, trial (i) from the interference effect 
following a correct no-conflict, or compatible, trial (c) (i.e.,  
(cI – cC) – (iI – iC)). The first trial of each block (1.4%) and 
outlier trials (RT > 2 SD from the condition-specific mean, 
calculated for each subject separately; 4.7%) were excluded 
from all analyses.

Results
Mood-induction manipulation check

Table 1 presents subjects’ mean affect ratings at all nine assess-
ment points. Participants began the experiment in a slightly 
positive (M = 0.59, SE = 0.14) and slightly aroused (M = 0.15, 
SE = 0.16) mood. Baseline ratings did not differ across the 
mood-induction groups, F(1, 87)s < 1.70. Participants reported 
the expected changes in arousal and pleasure following the 
mood induction. Average self-reported affect during task per-
formance (ratings given at the beginning and end of the task 
blocks; i.e., at Times 3−6 in Table 1) indicated that the sad  
(M = –1.8, SE = 0.25) and anxious (M = –1.5, SE = 0.23) 
groups reported lower pleasure scores than the calm (M = 1.5, 
SE = 0.24) and happy (M = 1.7, SE = 0.25) groups, F(1, 87) = 
181.14, p < .001, MSE = 1.33. Similarly, arousal scores were 
higher for the anxious (M = 1.7, SE = 0.31) and happy (M = 
0.9, SE = 0.34) groups than for the sad (M = –0.5, SE = 0.34) 
and calm (M = –1.0, SE = 0.32) groups, F(1, 87) = 40.05, p < 
.001, MSE = 2.42, although the unpleasant-mood subjects 
reported slightly higher arousal than the pleasant-mood sub-
jects, F(1, 87) = 4.30, p = .041. As in earlier studies (e.g., Eich 
et al., 2007), subjects judged their reported moods as genuine 
at the end of the task (M = 7.0, SE = 0.14), and this rating did 
not depend on mood condition, F(3, 87) = 2.69. Across mood 
conditions, comparisons between ratings given at baseline and 
at the end of the tasks suggest that the tasks themselves induced 
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some reduction in pleasure, F(1, 90) = 7.78, p < .01, MSE = 
2.30, but no change in arousal, F(1, 90) < 1.

Mood and conflict-adaptation effects
Reliable overall RT conflict-adaptation effects, F(1, 87) = 16.83, 
p < .001, MSE = 2,303.02, were observed for the flanker task, 
and, as Figure 1 shows, this effect was modulated by pleasure 
level, F(1, 87) = 4.241, p < .05, MSE = 2,303.02. This predicted 
effect of pleasure was not accompanied by an effect of arousal or 
by a Pleasure × Arousal interaction, F(1, 87)s < 1. Overall, inter-
ference effects were smaller if conflict was experienced on the 
previous trial (21 ms vs. 42 ms), and, as predicted, these conflict-
driven interference reductions were larger for subjects in a low-
pleasure mood (anxious and sad groups: M = 29, SE = 9.4, and 
M = 33, SE = 10.5) than for subjects in a high-pleasure mood 
(happy and calm groups: M = 8, SE = 10.5, and M = 13, SE = 

10.0). This effect could not be accounted for by mood-induced 
differences in overall RT or interference effects, F(1, 87)s < 2.23 
(see Table 2 for details on RTs, interference effects in RTs, and 
conflict-adaptation effects in RTs). Correlations between self-
reported affect during task performance and individual conflict-
adaptation effects across mood groups were not significant 
(pleasure: r = –.161, p = .13; arousal: r = –.134, p = .21).

Overall, conflict-adaptation effects for error rates were not 
reliable, F(1, 87) = 3.13 (see Table 2 for details on error rates, 
interference effects in error rates, and conflict-adaptation 
effects in error rates). Overall interference effects in error 
rates, F(1, 87) = 10.03, p < .01, MSE = 0.002, were not modu-
lated by mood condition, F(1, 87)s < 1.57, though subjects 
with low pleasure levels, F(1, 87) = 6.741, p < .05, MSE = 
0.004, and subjects with high arousal levels, F(1, 87) = 4.267, 
p < .05, MSE = 0.004, made slightly more errors in general 
than their high-pleasure and low-arousal counterparts.

Table 1.  Mean Self-Report Mood Scores in the Four Mood-Induction Groups

Time point

Dimension and induction group Baseline 1 2 3 4 5 6 7    8

Pleasure
  Anxious 0.42 0.54 −1.69 −1.69 −1.27 −1.96 −1.19 −0.04 0.77
  Sad 0.57 0.57 −2.05 −2.38 −1.57 −2.10 −1.14 0.14 0.71
  Calm 0.57 0.61 1.96 2.04 1.13 1.74 1.04 1.09 1.09
  Happy 0.81 0.33 2.62 2.33 1.62 1.62 1.29 1.24 1.14
Arousal
  Anxious 0.12 0.92 1.58 1.46 1.85 2.00 1.65 0.73 0.65
  Sad 0.14 1.29 −0.52 −0.91 −0.14 −0.76 −0.19 −0.14 0.43
  Calm −0.22 1.00 −0.61 −1.48 −0.57 −1.26 −0.74 −0.74 −0.22
  Happy 0.57 1.29 1.38 1.19 1.48 0.67 0.24 0.05 0.33

Table 2.  Behavioral Data for Each Mood-Induction Group

Mood-induction group

Anxious (n = 26) Sad (n = 21) Calm (n = 23)    Happy (n = 21)

Trial type RT (ms) Error rate RT (ms) Error rate RT (ms) Error rate RT (ms) Error rate

All trials 593   9.3% 619 5.6% 596 2.9% 604 4.8%
Compatible (C) 580   8.6% 600 4.4% 577 1.9% 587 4.7%
Incompatible (I) 607 10.1% 638 6.8% 616 3.8% 620 5.0%
  Interference effect: I – C   27   1.6%   37 2.3%   39 1.8%   33 0.3%
cC 572   3.7% 578 3.0% 568 1.2% 580 2.8%
cI 611   8.8% 631 6.9% 612 4.0% 613 4.4%
iC 587   7.4% 617 3.5% 582 1.2% 595 3.1%
iI 597   8.1% 637 6.8% 613 2.3% 619 4.1%
  Conflict-adaptation effect:  

    (cI – cC) – (iI – iC)
  29   4.5%   33 0.5%   13 1.7%     8 0.6%

Note: The table reports mean reaction times (RTs) and error rates, as well as the interference effects and conflict-adaptation effects for both of these 
measures. cC = compatible trials following compatible trials; cI = incompatible trials following compatible trials; iC = compatible trials following incompatible 
trials; iI = incompatible trials following incompatible trials.
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Discussion

This study provides substantial evidence for the hypothesis that 
conflict adaptation is sensitive to modulations in pleasure level. 
After a successful mood manipulation, both sad and anxious 
people showed stronger adaptation following conflict trials than 
did people in a happy or calm mood (see Fig. 1). This effect was 
not accompanied or modulated by effects of arousal level; sub-
jects with high-activation moods (anxious and happy groups) 
did not show differences in conflict-adaptation effects in com-
parison with subjects in low-activation moods (sad and calm 
groups). These findings thus suggest that affect helps to regulate 
goal-directed behavior in response to cognitive conflict

Our observations show an interesting parallel to the semi-
nal work of Festinger (1957) on cognitive dissonance. Cogni-
tive dissonance is thought to be triggered by conflicting 
cognitions and to be reduced by either avoiding the inducing 
perceptual events or changing one’s attitude. Dissonance 
reduction and conflict adaptation may thus both reflect adap-
tive avoidance responses to situations of incompatibility and 
rely on the same neural mechanism (Harmon-Jones, Amodio, 
& Harmon-Jones, 2009; van Veen, Krug, Schooler, & Carter, 
2009). In line with our findings, dissonance reduction through 
attitude change increases when people are in a negative mood 
(e.g., Rhodewalt & Comer, 1979). Low pleasure levels thus 
increase cognitive control after conflict situations only, rather 
than improving control in general (cf. van Steenbergen, Band, 
& Hommel, 2009). Thus, we observed only context-sensitive, 
dynamic effects, probably because moods—unlike short-term 
affect manipulations used in other studies (e.g., Kuhl & Kazen, 
1999)—are thought not to have stable, motivational conse-
quences leading to improved sustained control (Gendolla, 
2000; for a recent motivational account of emotions influenc-
ing cognitive control, see Gable & Harmon-Jones, 2010).

We believe that our findings may also provide insight into 
the way cognitive-control processes are impaired in psycho-
pathological individuals. Mood disorders such as depression 
and anxiety have been associated with increased negativity 
biases (Leppanen, 2006). Indeed, sensitized conflict-monitoring 
processes have been observed in people with internalizing 
mood disorders (Olvet & Hajcak, 2008). Whether conflict-
driven adaptations are also changed in these people has yet  
to be investigated, because mood-disorder studies using  
cognitive-control measures usually overlook conflict-adaptation 
effects, reporting main interference effects only (but cf. Holmes 
& Pizzagalli, 2007).

Altogether, our findings suggest that conflict-driven con-
trol adaptations are highly dependent on one’s emotional state, 
with pleasure level being more important than arousal level. 
Our results demonstrate that the influence of affect is not lim-
ited to conflict processing per se, but modulates subsequent 
behavioral adaptation as well. This suggests that affect is 
highly important not only in biasing perception and signaling 
environmental conflict, but also in adaptively regulating goal-
directed behavior.
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Notes

1.  Recent work has suggested a relationship between pleasure 
increases and shifts toward more flexible behavior at the cost of 
goal maintenance (Dreisbach & Goschke, 2004). The hypothesis that 
higher pleasure levels reduce conflict adaptation is in line with such 
a framework because conflict adaptation facilitates task maintenance 
at the cost of flexible switching (e.g., Notebaert & Verguts, 2008). 
Cumulating evidence suggests a role for neurotransmitter modula-
tion in these effects. For example, pharmacological studies suggest 
that raised tonic dopamine levels reduce phasic dopamine responses 
to conflict (for a review, see Jocham & Ullsperger, 2009). However, 
other neurotransmitter systems involved in mood changes (e.g., sero-
tonin and norepinephrine) may also play a role (Posner, Russell, & 
Peterson, 2005). The mutual interactions and causal role of these sys-
tems is complex and remains a hot topic for future investigation.
2.  We could not use reaction time data from the Stroop task to test 
our hypothesis, given that no overall conflict-adaptation effect was 
observed in Stroop reaction times, F(1, 87) = 1.37. As expected, 
mood effects on this measure were not observed, F(1, 87)s < 2.31. In 
line with the flanker task, this task did produce a reliable interference 
effect, F(1, 87) = 70.60, p < .001, which was not modulated by mood, 
F(1, 87)s < 1.

Task-specific characteristics, such as task difficulty, may account 
for differences in the size of conflict-adaptation effects (e.g., Fischer, 
Dreisbach, & Goschke, 2008). In a new series of experiments includ-
ing Stroop and flanker tasks similar to those used in the current study, 
we indeed demonstrated that high task demands eliminate conflict-
adaptation effects (results to be published elsewhere).
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