The E-Primer

An introduction to creating
psychological experiments in E-Printe

Michiel Spape
Rinus Verdonschot
Saskia van Dantzig

Henk van Steenbergen

LEIDEN UNIVERSITY PRESS

Cover design: Mulder van Meurs, Amsterdam
Lay-out: V3-Services, Baarn

ISBN 978 90 8728 183 0
E-sBN 978 94 0060 129 1
NUR 770/980

! Michiel Spape, Rinus Verdonschot, Saskia van Danzig, Henk van Steenbergen
/ Leiden University Press, 2014

All rights reserved. Without limiting the rights under copyright reserved above,
no part of this book may be reproduced, stored i introduced into a retrieval
system, or transmitted, in any form or by any meangelectronic, mechanical,
photocopying, recording or otherwise) without the ritten permission of both the
copyright owner and the authors of the book.

Acknowledgements

This book is the result of intensive collaboratiometween people who, at one
time or another, studied or worked at Leiden Univeity. In 2006, we extended a
collection of E-Prime exercises into something reswwling a coherent course. In

subsequent years, we =* initially as a rather dynaengollective of PhD students £
have revised the manual in order to help those whwant to prepare for creating

their own psychological experiments. Later, we expded the work so it can now
also serve as a basic introduction to E-Basic coglim E-Prime.

Along the way, many people helped us in the writingf this book. First, we would
like to thank David McFarlane, Michael Richter, Kstin Brinkmann and the peo-
ple at Psychology Software Tools for providing héip comments when reviewing
an earlier draft of this book. There were also numeus students who provided
useful feedback during the period when this book vgabeing used for courses at
Leiden University. In particular, we would like tahank Hans Revers and Erwin
Haasnoot for their constructive comments. Many mor@eople have joined our
journey, but at different moments in time. Each ofis would like to mention a few:

Michiel Spape: 2l would like to thank Elkan Aky"rek for introducing me to E-
Prime and Jan-Rouke Kuipers for sharing my 2pain®awe first started to teach it
ourselves. Stephan Verschoor for being my favouritenhappy victim® for dem-
onstration purposes when no student volunteered B¢ nightmare of any teacher.
Wido la Heij and Gezinus Wolters for providing my nnd with many brilliant
exemplars in teaching: easily retrieved from memaryet so hard to successfully
imitate, and Zania Sovij#rvi-Spape, for continuingo put up with a coding geek.°

Rinus Verdonschot: 2l am grateful to the Cognitive $ychology department of Lei-
den University for giving me the chance to teach Eime to so many enthusiastic
students and also to the people who participate a&ly in the Google E-Prime
group and, thus, help out researchers all over theorld. Lastly, a big thanks to my
family, friends and colleagues.®

Saskia van Dantzig: @2I'd like to thank Diane Pechewho introduced me to E-
Prime and encouraged me to develop the E-Prime caerfor psychology students
at the Erasmus University. This course supplementeseveral chapters of this
book. Diane was also one of the reviewers of thiedk. Thanks to Rolf Zwaan
for challenging me to program complicated experimeén, which boosted my pro-
gramming skills and let me explore the endless poibdlities of E-Prime. Thanks

to my former colleagues at Leiden University and Bsmus University. To con-
clude, thanks to Alexander for his encouragement drio my kids for enabling me

to do the work | love. 2

Henk van Steenbergen: @ would like to thank the nmey colleagues at Leiden
University with whom | have been sharing E-Prime mblems and solutions on
a daily or weekly basis. Thanks to Guido Band, Bérard Hommel and Sander
Nieuwenhuis for encouraging me to publish this bookThanks to Belle Derks
for helping us to set up the revised E-Prime coursand Margot Schel for help-
ing me to thoroughly revise and extend the predewas of this book, resulting in
the current end product. Anne Bolders provided grédelp with proof-reading.
Thanks to Thijs Schrama for providing technical hplalong the way. Finally, | am
grateful to Eveline and my family and friends forrcouraging me to get this book
published.®

Table of Contents

Introduction

What is E-Primé and what will | learn?
Why should | learn E-Primé ?

Online support

Chapter I: E-Prime at a glance
E-Studio, E-DataAid, E-Recovery and E-Merge
Object Oriented Programming
Conceptualising an experiment
E-Studio's structure

E-Objects

Procedures, Lists and TextDisplays
TextDisplays

Tutorial I: A simple RT experiment
Exercises

Advanced Exercises

Chapter IlI: Attributes, Slides and more on Lists
Experimental design in E-Primé&

More on lists

Showing an image

Showing multiple images and layers of texts
Feedback

Tutorial II: The Simon Task

Exercises

Tutorial 111: Implicit Association Task
Exercises

Advanced Exercises

11
11
12
12

15
15
17
19
22
24
25
26
36
41
43

45
46
47
53
56
56
58
62
62
64
65

Chapter IlI: Sound, movies, hardware, and nesteddts
SoundOut objects and digital audio

MovieDisplay object

Wait object

Labels

Experiment properties

Nested Lists

Counterbalancing and between-subject manipulations
Tutorial IV: Visual search and distracting sound
Exercises

Tutorial V: Ego depletion experiment

Exercises

Advanced excercises

Chapter IV: Beginning programming in E-Prime
E-Basic in E-Primé

Different types of variables

Math operators

Mathematical functions

Combining numbers and text

String functions

Linking variables to input/output windows
Linking variables to attributes

Inlines everywhere

Tutorial VI: A working memory test
Exercises

Advanced excercises

Chapter V: Decision making in E-Basic
The If-Then statement

Combining conditional expressions
Comparing values

How to terminate parts of your experiment
Tutorial VII: The Ultimatum game

Tutorial VIII: The Cyberball game
Exercises

Advanced exercises

8 THE E-PRIMER

67
68
73
74
75
76
79
08
81
86
87
88
89

91
92
93
95
98
98
100
101
103
105
108
111
111

113
113
115
118
119

121
128

134
134

Chapter VI: Loops and Arrays in E-Basic
Looping with Labels

The For-Next Loop

Loops with conditional expressions

Lists and arrays

Arrays of a user-defined data type
Tutorial IX: Quasi-random trial selection
Exercises

Advanced exercises

Chapter VIl

Interactions between Slide objects and the Mouse
The Slide object

Accessing the mouse in E-Prime

Programming user interactions

Tutorial X: A simple questionnaire

Tutorial XI: A mouse tracking task

Exercises

Advanced exercises

Chapter VIII: Various Input/Output devices

The Serial-Response box

Voice-key experiments

Sending signals using the parallel port

Reading and writing text files

Tutorial XII: Making a Voicekey (VK) test program
Exercises

Advanced Exercises

Reference List

Appendix: Overview of available E-Objects
About the authors

Index

TABLEOF CONTENTS

137
137
139
141
143
149
150

159
159

161
161
162
165
166
169
172
175
176

179
180
182
185
190
192
194
194

197
199
201
203

Introduction

The E-Primer is written with a reader in mind whos eager to learn, but knows lit-
tle, if anything about programming, computer science and the actuisnplemen-
tation of all those wonderful scientific experimers that make up the body of the
reading list of psychologists and cognitive sciests. This is not to say, however,
that more experienced readers will not find it inteesting as many chapters also
deal with advanced E-Prinfe and programming skills.

What is E-Prime and what will | learn?

E-Prime® is a software package used to design and run psgtdgical experiments,
with a focus on psychological and cognitive sciencand to acquire and analyse
data. E-Primé& consists of a number of programs with different factions. In The
E-Primer, we will discusskE-Studiq E-Basi¢ E-Merge, E-Recoveayd E-DataAid
We will assume you use E-Prime 2, but most of theedtures we discuss were
already introduced in E-Prime 1. When the two veosis significantly differ in
operation, we discuss each separately.

You will learn how to use each of these programsfeétively in order to ultimately
implement your very own experiments. First, howeveyou will learn how to re-
create a number of fascinating, famous experiment®V/e guide you through this
process in an easy to follow, step-by-step approachmow click on this button over
there' + using Tutorials Along the way, we explain why this is being dorend try
to communicate our insights on general good practcin design. Gradually, we
will move beyond the narrow confines of the “clickere-now-there' steps and ask
you to implement simple variations. These form théasis of theExerciseat the
end of each chapter. Finally, in th&dvanced exercisgsu will be asked to explore,
with minimal guidance, the horizons of E-Primé& and how you could pursue the
effective realisation of your own research interestMake sure that you save your
work, because you may need it in subsequent chaper

11

Why should | learn E-Prime

There are a number of reasons to learn E-PritheFirst, many students during
their studies will become involved in doing a reseeh project. This will eventu-
ally involve setting up and programming an experintg, which requires good
E-Prime® programming skills.

Second, learning to program is more than just learng a specific programming
language. Programming involves mostly logical thirikg. Once you have learned
to program in E-Primé , you can easily transfer your knowledge and skilts
new programming languages. Moreover, you will haviearned to think about
experiments in a structured and logical way. Thikal is not only useful for set-
ting up an experiment yourself (for example, duringgour research project), but
it also helps you to read and understand empiricplapers. Finally, we hope we
can communicate some of our own enthusiasm and thidea that programming
and realising your imagination, creating somethingut of nothing, is really a lot
of fun.

Online support

E-Prime®* has a good support websitehttp://www.pstnet.com/support/login.asp.
Here, you will find examples of experiments and amgers to frequently asked
questions and problems. If you encounter a problerand can't find the answer
on their FAQ and knowledge-base pages, you can sethé&m your question via
a special form on the website. You will then recedva personal answer, usually
within a day or two. In order to get this personaupport, you have to register (for
free) on the website.

More information can also be found in the E-Prime$manuals. There is a short
“Getting Started Guide' and a more extensive "UseGuide' and "Reference Guide'
(Schneider, Eschman, & Zuccolotto, 2002).You cansal find more information on
the STEP (System for Teaching Experimental Psychgy website. STEP is a web-
based project designed to maximize the use of E-Rg8® : http://step.psy.cmu.edu/

This website includes ample examples of common pali@ms in experimental
psychology. It should be noted that these experimisnare programmed in the
previous version of E-Prim& (E-Prime 1). However, you can still open and run
these experiments in the current E-Primfe version (E-Prime 2).

12 THE E-PRIMER

Lastly, an independently-run mailing list exists v a sizeable community that
may be able to assist with urgent queries that sirhpcan't wait for the E-Primé&
support. Or, perhaps you have a more design-relatgdestion, or just want to
let everyone know how much you love designing expeents in E-Prime®:
http://groups.google.com/group/e-prime

INTRODUCTION 13

Chapter |

E-Prime at a glance

In this chapter, you will learn

About: * E-Studio, E-DataAid, E-Recovery and E-Merge
* Object Oriented Programming
E-Studio's structure
Procedures
Lists
* TextDisplays

How to: * Create your first experiment
* Pimp your experiment
Save and analyse your data

This chapter will introduce you to the E-Prime software package. You will get
acquainted with the different programs that enablgou to create, run and analyse
experiments. You will learn that E-Prim& usesobject oriented programmingto
offer you different types of objects. These E-Objsdunction as building blocks
that enable you to create your own experiments irelatively simple and straight-
forward way. Before actually starting to programt, is important to visualise what
your experiment will look like. Firstly, you will €arn how to conceptualise your
experiment, which makes the actual programming a i@asier. After reading this
chapter, you should be able to program, run and alyae your own first experi-
ment.

E-Studio, E-DataAid, E-Recovery and E-Merge

When we talk about “working in E-Prim&, “an experiment written in E-Primé& ,
or even "E-Primé crashed again', we generally mean E-Studio. You ynhe de-
lighted * or disheartened * to learn that E-Prinfeis actually a software package

15

composed of a number of programs other than E-StuaiWe will talk about these
other programs throughout this book, but, generallyhey are straightforward and
don't merit coverage beyond a quick summary.

"
¥

E-Studio & is based on, or perhaps merely inspired by, Visu8tudio and can
be called an "IDE: an integrated development envinment'. The graphical user
interface is a convenient way to writedlévelopcode, simply by dragging and drop-
ping objects onto a timeline. This makes the dauntg task of developing experi-
ments at leastlookas simple as using friendly and familiar Windows qograms
like PowerPoint. However, it is not quite true thaho real programming (i.e.cod-
ing or scripting is required: almost all original experiments atsne point require
the developer to write at least a few lines of cqdend, more importantly, it can
save a lot of time to do so. We will see how thisovks in later chapters. The ex-

periment in E-Studio is stored as ares2file.

[=g

E-DataAid €/, is a program that can read E-Printe output. Whenever an E-
Prime® experiment is run, a unique datafile is created rfa.edat2 file). These
.edat? files can't be opened directly by Microsdiixcel or SPSS, but you can use
E-DataAid to convert them into such formats. Addivinally, E-DataAid comes with
many additional features that make it much easieoiget your data in proper shape
for analysis. For example, you can filter out missgy data before exporting, explore
outliers and filter them out, generate crosstabs tmase your graphs on, etc.

(y

E-Merge does nothing more than merge data. Typically, wherou have run

N subjects, you will end up withN .edat2 datafiles. Of course, you can analyse
each one in turn, or even import each one into SPSBut this involves the risk
that each action can go wrong, adding a chance ddtd-corruption due to hu-
man- or machine error; furthermore, each action cts time. With E-Merge you
can merge theN datafiles into one large file. To merge a set of @diles, take the
following steps:

1. find the .edat2 files that your experiment hasgerated,;
2. select them all using your mouse and control- @hift-clicking;
3. click on theMergebutton.

This generates aemrg?2 file, which can also be opened and analysed withi
DataAid.

16 THE E-PRIMER

(4

E-Recover; is the smallest and simplest program in the packaglf E-Primée®
crashes during an experiment, no .edat?2 file is gerated. However, when the ex-
periment is running (aka. runtime), a.txt file is created to which data from each
trial are appended. This .txt file contains the sandata as the .edat2 file, but it
is rather inconvenient to analyse. So, should E-Bé® crash after having gone
through several trials, you can open E-Recovery atake the following steps to
recover the (partial) data:

1. pressBrowse
2. look up the specific .txt file that you wish teecover;
3. pressRecover

Now you have an .edat?2 file that is fully equivalemo the others, except that it
lacks a few trials (if you are lucky). Since this all E-Recovery does, the program
will not be mentioned anywhere else in this book.

[
E-Run allows you to run experiments. When you have creatan experiment
in E-Studio and presgcontrol+) F7 an.ebs2(encrypted e-basic script) file is cre-
ated. The .ebs2 file can be run in E-Run.

Object Oriented Programming

E-Prime*, like many popular programming languages such as% and Visual Ba-
sic .NET, is based on the concept &bject Oriented Programming(OOP).

A good example of arobjectin daily life is “a car'. One can do certain thirgy
with objects, such agriving, steeringand pursuing horizonsln programming, we
call such abilitiesmethods. In programming script, an object's method is indi
cated in the following way: Object.method(parametg. For example, the code
Car.drive(forward) would let the car object drivefward, theCar being the object,
drivebeing the method,forwardbeing a parameter of thelrivemethod. The other
important feature of objects is that they usuallydveproperties a car carnbe red
has a top speed of 200 kiiilas four seatnd so on. If we wanted to tell an object
oriented programming language that our car is darklue, we would say that our
Car.colour = dark blyearbeing the objectcolourbeing the property anddark blue
being the parameter of the colour property.

E-PRIME AT A GLANCE 17

From idea to result

Designing, running and analysing an experiment with E-Prime software

18

Step Subprogram
Conceptualise
Experiment
Flow chart
|
A 4
E- i
Create Studio
experiment E-Basic
A 5
E-Basic Script E-Studio file
(.ebs2) (.es2)
.
Ruz E-Run
experiment
< i >
Subject 1 Subject 2 Subject N
é
Text fil E-Prime ’ E-Prime ’
ext file Datafile Text file Datafile Text file
(.edat2) ‘ (.edat2)
v

Convert Text file to
E-Prime datafile

|
v

€<

E-Prime Datafile
(.edat2)

7

Merge E-Prime
datafiles

Merged file
(.emrg2)
v

Analyse and export
data

THE E-PRIMER

E-Recovery

E-Merge

E-DataAid

Two other concepts of OOP armstancesnd inheritance Our car, for example,
is not just any car, it is OUR car* That is to sagurCaris aninstance, in other

words, a particular or token from the object or tygCar. This matters for pro-

gramming, because if we add something tmyCar, such as a boom-box or mir-
ror dice, this does not alter cars in general, bulhe same is not true if cars in
general come equipped with such devicemheritance is also about the types
and tokens: since our car is a Suzuki, ibheritscertain properties and methods
that are generally true for most cars, such as thiatomes with a steering wheel
and four wheels. Specifically, our car is a Suzulwift, which inherits certain

features from the Suzuki object, such as its chegmice and uncomfortable

seats.

Don't worry if these concepts strike you as diffidiand abstract. Understanding
them is not crucial to programming basic experimest but since they are of such
importance to modern-day programming, we hope thateir functions will be
revealed to you during your work with E-Prinfe.

Conceptualising an experiment

When you are designing an experiment you might bempted to run to your com-
puter and start programming straight away. Howevehefore you start program-
ming, you should try to visualise what your experient will look like. This may

sound self-evident, but it remains an important sgethat is easily omitted, with

nasty, if not fatal, consequences ensuing. So, tiy conceptualise the experiment
by asking yourself the following questions:

* What kind of design do you need? A between-subjgaesign or a within-

subjects design?

Which variables do you manipulate? In other wordsvhat are the independ-
ent variables? How many levels do these variableavie? How many condi-
tions does the experiment have?

What are the dependent variables that you will masure? For example, do you
aquire data regarding reaction time, error ratesnd so on?

Does your experiment contain blocks of trialsi? yes, what is the order of

presentation of these blocks?

Does your experiment have a practice block?

* How do you instruct the participant?

What happens during a trial? What kind of stimuls is presented? How long
is the stimulus presented for? How should the pacipant respond? What

happens if the participant responds too slowly?

E-PRIME AT A GLANCE 19

" What happens between trials? Does the particigaget feedback? How long is
the interval between trials (we call this thmter-trial interval, ITI)?

* In which order are trials presented? In randomrder? In a fixed order? Or in
a semi-random order?

To facilitate programming, it can be useful to drava flow chart that displays
the structure of the experiment. An experiment typally contains a hierarchy of
Procedures. The main Procedure (called “SessionProcE-Prime®) determines
the global order of events in the experiment. Thisne is depicted on the left. Sub-
Procedures are depicted to the right of the main 8cedure. A flow chart contains
different elements:

A flow chart contains different elements:

Event Refers to a specific event during the experimerfgr
example the presentation of a picture, text or sodnindi-
cates what happens, the duration of the event, ahdw the
event is terminated (e.g. by pressing thepace bar

Run until spacebar is

Instruction screen
pressed

Experimental block Sub procedureRefers to a Procedure at a lower level of the
UTEIArete hierarchy. Indicates the name of the Procedure, theum-
100x random order s
ber of repetitions of the Procedure and the orderf dhe
repetitions (e.g. random).

Decision The Procedure branches into two options. The di-
amond indicates a criterion (e.g. response = corteor re-
action time < 1000). If the criterion is met, the ¥s-branch

is followed; if the condition is not met, the No-banch is
followed.

l Arrow. Indicates the flow of the events.

On the next page is a flow chart of a simple reagti time experiment with one
practice block and one experimental block.

Note that if this way of visualising an experimenimmediately strikes you as a
great way to organise your thoughts into a workabbiesign, then that is won-
derful. However, if you feel it is a tedious amounof work that constrains your
creativity by needlessly imposing order, then youight do best to save yourself
the amount of paper involved. After all, some peoplprefer to work at a messy
office desk. However, even if this is the case, mepe you will try to understand

20 THE E-PRIMER

the endeavour as we will be illustrating various pects of E-Primé& using these
flowcharts.

SessionProc

Instruction screen
Run until spacebar is

pressed TrialProc
ITI
1200
' ms
Practice block ¢
TrialProc | ---- >)
16x random order Hime
40 ms
\
v
v Target
2000 ms
Break
Run until spacebar is 1
pressed
Feedback
Response? No—p TOO SLOW —
\ 4
5 Yes
Experimental block v
TrialProc | F---- | 4
100x random order No_ FeEdback
rror
Yés
\ 4
* .
Thank you screen Next trial

End of experiment

Now, let's get back to the more practical work arfthve a look at E-Studio*

E-PRIME AT A GLANCE 21

E-Studio's structure

Here's an example of what an experiment looks likehen we open it in E-Studio.

AB C D E F G H

A. In the Menu you can perform a number of typical Windows operains,
such as opening and saving your experiment. In adthn, by clicking on
View, you can open the other areas (B £ G and a few etlones). By clicking
the Run icon £ * or pressingF7, you can compile and run the experi-
ment. Use the E-Run Testicon to run a quick test of your experiment (E-
Prime 2 only; E-Prime 1 users may consider th&lock.Scalecode described

in Chapter 1V).

B To abort an experiment early, pressontrol+alt+shift to terminate the
E-Run application.

22 THE E-PRIMER

E-Objects

E-Prime® contains different objects, each with its own chacteristic features and
purposes. Here is an overview of the objects thataused most often.

A Procedureis used to determine the order of events in an expaent.
A List contains rows of items with specific properties {aibutes).

An ImageDisplaydisplays a picture.

A TextDisplaydisplays one or more lines of text.

A MovieDisplaydisplays a short movie clip.

A Slide is a container type of object which can simultanesly present
text, images, sound and so on.

A FeedbackDisplaygives specific feedback on the participant's respse
to a stimulus.

A SoundIn is used to record sounds.
A SoundOutpresents a sound file (.wav/.mp3/.wma).
An InLine is used to add E-Basic script.

A Labelindicates a particular location on the timeline. fie program can
‘jump' backwards or forwards to a Label, in ordeo trepeat or skip a part
of the Procedure.

A PackageCalkontains reusable blocks of E-Basic script writtdyy us-

ers of E-Prime 2 (often used in Procedures, whiclreaused repeatedly
or, for instance, in connecting equipment such asnaeye-tracker to an
E-Prime® experiment). As packages are beyond the scope littbook,

please see the "New Features Guide' for E-Primed fa more detailed
description.

Procedures, Lists and TextDisplays

A Procedureis the highest unit in the hierarchy of E-Prime. It is used to specify
the sequence of events in the experiment.

A Procedure is depicted as a timeline. The green
ball on the left indicates the start of the Proce-
dure and the red ball on the right depicts the end

of the Procedure. In this example, the Procedure
called "TestProc' presents two TextDisplays. First,
it shows the Wait1l000ms TextDisplay, followed

by the PressSpace TextDisplay.

When you open a new experiment, it already contaiasProcedure, specifying the
order of events in an experimental session. This &gedure is called "SessionProc'
by default.

Lists are extremely useful objects. They repeat and rder Procedures. Conse-
guently, they determine the way in which Procedureare repeated, for instance,
randomising certain variables that are contained ithe List.

When you create a new List, you will see this win-
dow:

The rows contain different items, the columns
indicate the properties (calledttributes) of these
items.

By clicking on theAdd Leveicon or the Add Multple Levelgson , you can
add one or more rows, respectively.

By clicking on theAdd Attributeicon or the Add Multiple Attributescon ,
you can add one or more columns, respectively.

Each list has a column named "Procedur®y filling

in the name of a Procedure in a particular row, you
specify which Procedure is used by that row. If the
Procedure name doesn't yet exist in the experiment,
the following pop-up window appears, telling you

that the Procedure doesn't yet exist and asking you
whether the Procedure should be created. Clivks.

TextDisplays

TextDisplayspresent text in a singular formatting. This one sbws the instruc-
tion to press thespace barTextDisplays also offer a feature that may be ave
more important than showing text on the screen: thyecan collect responses. This,
amongst others, is discussed in detail below.

The TextDisplay is the simplest way of showing stimhi and collecting responses
and almost the only object required to make a simplStroop experiment (see
Chapter Il). Later on, we will see that other objex; such as the Slide and the
FeedbackDisplay, canontainTextDisplays.

When you drag a TextBox from the Toolbox area orgd’rocedure and double click
on it, you should see something like the screenshawith the exception that it is
usually named differently and doesn't say ‘PRESS/ASPE".

The TextDisplay's name is shown at the top left

corner. When you add a new TextDisplay to the

experiment, it will be named “TextDisplayl' (or

"TextDisplay?2', if "TextDisplayl' already exist#).

is good practice to rename the objects and give

each of them aunique and descriptiveame without funky characters such as
commas, semicolons, spaces, etc. The above exangdenittedly shows hownot
to name an object: sensory presentations in expergmts are stimuli by default,
which makes this name not at all descriptive or ugue.

Once you have created a TextDisplay, you can clak the Propertiesymbol to
open theProperties window his window has different tabs, allowing you toefine
various aspects of the object.

B Notice that, following theProduction Releagé E-Prime 2, the PreRelease
is always set to(Same as duration)While this will make it much less likely that
your experiment will have timing problems, the degre to which subsequent
objects will be runbeforehe PreReleasing object ends can make your lifgfd
cult. In particular, care should be taken when 1he¢ next object on the timeline
is an InLine or a PackageCall; 2) the objecttiviPreRelease is the last object on
the timeline; or, 3) the next object is a Feedbacisplay.

CRESP Correct response. As stated above, typically degemn the condition
and trial.

RESP The actual response.

ACC: The accuracy, defined as 1 if the RESP and CRE®®equal and other-
wise 0.

RT: Reaction, or response time (ms), which is RTTinme OnsetTime.
OnsetDelay Difference between programmed time the stimulus as to be
presented (in the case of visual stimuli: on the smen) and the actual time its
presentation started.

DurationError: Difference between the prescribed duration theistulus was
to be shown on screen and the actual time. Or sttlig speaking: OffsetTime >
PreRelease £ OnsetTime + Duration.

Which logging properties you should use, depends oyour experiment. Three
other valuable logging properties are:

RTTime: Time stamp of the reaction relative to the beging of the experi-
ment (ms).

OnsetTime Time stamp of stimulus onset relative to the begning of the

experiment (ms).

OffsetTime: Time stamp of the end of the presentation of thetimulus (ms)

relative to the beginning of the experiment. Noticehowever, that this is not
necessarily when the stimulus ends: a visual stimus$ remains “on the screen'
as long as no other stimulus overwrites it, and aaudio file of 4 seconds long
may contain 2 seconds of silence.

Tutorial I: A simple RT experiment

Do you, like Michiel's cat (right), have
“lightning reflexe®' Believe it or not,
many first-time participants who are
unfamiliar with psychological experi-
ments want to know “how well they did'
and considering that your first priority
is most likely not pinning someone on
a kind of normal (vs abnormal*) distri-
bution, it is always good to tell them
they were quite fasts'. Let's find out
how to do this*

It can be hard to start programming an experiment®ém scratch, so you may find
it easier to follow a certain process schema. Firsind crucially, what is it that you
want your participants to see during an experimest what do you know from your
own experiences with psychological research in theb? Imagineexamplesrath-

er than defining everything beforehand: instead dfying, for example, to show
Stroop-like stimuli, ask yourself: “so what is a ®bp-like stimulus?' "Well', you
answer, ‘'something like the wordedwritten in blué. Then, define the Procedure
of a trial as the sequential presentation of suchisuli.

Common elements of an experiment include:
Trials: Typically, this includes:

' Afixation: This stimulus that is often shaped ke a crosshair or addition sign
‘'warns' the participant that the interesting stimuls is approaching.

' The target: The interesting stimulus itself, to hich the participant is to re-
spond.

* Some form of feedback (occasionally).

Blocks Are defined by the number and variant of trialshey contain. For in-
stance,

* Atraining block may contain some 20 trials angs used to get the participant
accustomed to the experiment.

* A testing block contains more trials, dependingn the variability of the out-
come measures, the number of conditions, etc.

Open E-Studio, seledlank experiment

Save your experiment in a location where you céind it again easily (e.g. a
USB stick, your personal drive, etc.). Give the eement a unique name that
doesn't contain weird characters (slashes, dotscgt

Make sure you always save your work. Keep youe ftructure well-organised*
Subsequent chapters may ask you to re-use part ofiy earlier work. There is

an additional advantage: by saving your work yowsalstart a personal collec-
tion of experiments that may serve as a source fature reference.

In the Structure view, double-click oisessionPracyou will see a timeline pop-
ping up:

Drag a List from the Toolbox to the SessionRrdo the timeline and call it
"BlockList' (this is a conventional name; you cars® use any other name as
long as it doesn't contain strange characters or apes).

Double-click on theBlockListand add one row by clicking on the icon of the
arrow pointing down.

Change the name of the Procedure column of tHigst row to “TrainingProc'
by editing the text. Please note that it is also ggible to click on the down
triangle next to the name and change the Procedute an existing one: Ses-
sionProc.DO NOT DO THIS" For some reason, this seems the most intuitive
action and we have seen many students astonishedhatw fatally E-Primé
crashes when this seemingly minor mistake is made.

E-Primée will ask you whether you really want to create thnew Procedure
+ TrainingProc + and here you selectes If E-Prime® asks you whether you
want this Procedure to be the default one, seledb.

Change the name of thérocedureolumn of the second row to “TestingProc'
and repeat the previous actionsYés No). Notice thatnot creating the new
procedure will result in a bug.

Double-click on theTrainingProcand add a List there. Rename (select and
pressF2) the List as TrainingList. Double-click on th&estingProand add a
List there, rename it as TestingList.

Edit TrainingListand make the weight of the first and only row 10n the Pro-
cedure column, write down the name “TrialProc'.

Edit TestingLiseand make the weight of the first and only row 2Gthen write
down the name “TrialProc' as its Procedure.

Now you have the basic hierarchy of an experimemne experiment with two
blocks, one for training and one for testing, anthe two blocks run the same
Procedure; the training 10 times, the testing 20rou can check whether you
successfully completed this step by matching youcieen with the screenshot
below.

B You could also consider dropping th&lockListand simply running the
TrainingList and TestingListconsecutively in yourSessionProcHowever, we
think that the BlockList solution has many advantasg. For example, while test-
ing whether your experiment runs correctly, you caaasily skip parts of it by
setting the weights of the respective rows to 0. Meover, if you want to abort
your experiment with Inline scripts you can do so by simply terminating the
BlockList (see Chapter V). The BlockList is als@eoper place to nest Lists used
for counterbalance/between-subject manipulation pposes (see Chapter lll).
The attributes of thesenested Listare then automatically inherited by Lists
lower in the experimental hierarchy.

Step 2: Programming the trial

The trial is perhaps the most important unit in gur programming experi-
ments. Here, you will be showing your participant éxation for 500 ms, and
a target for an infinite = or until key-press + ammt of time.

Double-click on theTrialProcand drag two TextDisplays to the timeline. Name
the first “Fixation' and the second “TargetStimulus

Edit the Fixation to show a single ">' sign ana@ thave a duration of 500 ms.
This is our “inter-trial interval' (ITI).

Edit the TargetStimulus to show the command "Prespace*' and to have an
infinite duration. Then, add an input-device by ctiking on Add in the Dura-
tion/Input tab, and choose&eyboardSet, as the onlAllowablekey, {SPACE]}.
Mind the capitals, they are important here. Alsoges the spacebar as the only
correctkey (this is generally not the case*) and accepe tstandard type of

logging.

Your experiment should run now, so try this. Its good practice to run your
experimentfrequentlybecause this makes it easier for you to diagnose,de-

bug, problems. Run your experiment with any subject maber but 0, or else

nothing is logged. Remember: if you want to aborhe experiment quickly,

you can always pressoatrol+alt+shift(or perhaps ontrol+shift+backspace
When starting your experiment, the resolution of yor screen may change. In
Chapter Il we will discuss how to change these saen settings.

When you have finished testing the experiment,att E-DataAidand open the
data you generated. These can be found in the safoller where your experi-
ment was last saved.

Scroll through your data and note the various aohns. For example, notice

how the trial number starts at 1 and goes on to llecause the first block (the
TrainingList) is finished after 10 trials; then srts at 1 again but now goes to
20, because the second block (the TestingList) isihed after 20 trials.

Since we want to know what your participant's arege basic reaction time

was, the TargetStimulus.RT is most important tosu Notice how several val-
ues will be well below (approaching an unlikely @nd above (in case you were
distracted) the average. Apparently, a bit of fitieg needs to happen to get a
clear picture of your RT in comparison to your nefgour's.

Click on Tools selectAnalyzeand click onFilter. In the dropdown box, select
TargetStimulus.RT(in alphabetical order here) and click oi€hecklist Now,
click once on the first value that is higher or el to 100, then scroll down,
andshift+clickon the last value that is lower than 1000. Only &n, with all the
values you want to include selected, prespacebaand click onOK. In this
way you prevent outlying RT values from distortingour mean RT values.

B Consider what would happen if you save this analysasd apply it to an-
other dataset later. In this case, it is quite likethat there are new unique RT
values in your dataset not yet included in your cbklist. In other words, you

have to reselect the relevant RTs. In those casemight be preferable to use
the Range alternative. CliclRange¥and set the first range tdGreater than or
equall00, combined with the second range beingess thari000. Don't forget

to select theAND operator, since our inclusion criterion is that&ch single RT
needs to meet both conditions.

So now that we have deleted the outliers from filmer analysis, close the filter
and drag TargetStimulus.RT from the list of varldes toData. Click on Run
and get ready to be astounded by your reaction timdichiel's was 191 ms.

One of the reasons why many people use E-DataAndconjunction with E-Prime®
is the ease with which you can make crosstabs. Hasehow we do it:

Close the analysis results and, without changingnything else, drag the
Procedure[Block] variable from the list to eitmehe row or the columns (try
both). Again, click onRun.

This is what it should look like:

So, Michiel was about 43 ms faster after training bit.

Exercises

Add an introduction screen to the start of youngeriment, with infinite dura-
tion, terminating when the participant presses a ¢&in unique key (‘press C
to continue’).

Add a goodbye screen and a thank you screen tayexperiment.
Use the mouse instead of the keyboard as Inputidiee for the TargetStimulus.

To do this, you basically do the same as you didtlvthe keyboard as an input
device, except that the response keys are definedlgleft mouse-button) and

' Pimp your experiment: adjust it to your taste aio what you think would be
wise; just experiment with all the options.

* Design an experiment to test the following hypo#sis: it is easier to respond
to green than to red. The idea is clear: typicallye need to stop doing some-
thing when a red light appears, so a psychologisbwdd hypothesise that be-
cause we internalised this rule and thus suppresdl action when a red light
appears. It is time to find out whether this is tre.

You can base this experiment on the one you madetime tutorial. First, the trial

needs to be changed: the fixation should now haveyeay background; the target
should have no word anymore, but just be a colourdhckground. The Training-
List should now havewhitetargets. The TestingList should now hawgreerand red

targets.Therefore, the TestingList should get one extra rpwao that there are two
different procedures. Instead of having the Testingst call @TrialProc®, let it refer

to 2RedProc® and 2GreenProc®:

B At this point, you might think: would it not be mucd easier toreusethe
same Procedure but only change one aspect + oriable + of the trial? In the
next chapter, you will find out that this is indeedhe case and you will learn
how to do this usingattributes.

Advanced Exercises

Instead of analysing all data separately for eaplrticipant or cutting and
pasting data into Excel from various edat (.edaflat?) files, one can simply
use E-Merge to merge edat datafiles together irdoe big file.

Make sure you have more than one edat datafileif your experiment with
different subject numbers) and put them in a diredry. Start E-Merge, go to
the directory containing the files using the foldetree and first filter that di-
rectory so you can only see the edat files and motything else (press th&ilter
button) and use @.edat or @.edat2 (the @ wildcaeshsneverything).

Select the edator .edat2files and press theMergebutton (use the standard
merge). Now you will see that an .emrg or .emrg2d has been created con-
taining all the information from the two separateifes.

Now use E-DataAid to analyse all your particip@tfisessions at once.

Interactions between Slide objects and the Mouse

In this chapter, you will learn

Dear reader, let's assume you have got all the widliyough six chapters full of
useful information and are now well able to code yo very own reaction time
experiment. However, in order to dazzle your peeeven more with something
more beautiful, interactive and indeed, “flashy'nithis chapter we will start to go
beyond the very basic 80s type of cognitive expeem and will include fancy new
hardware, like the mouse, and aspects of more qualive research; that is, the
guestionnaire.

It is important to remember that E-Prime's greatestrength lies in critical tim-
ing and interaction with apparatuses that requireuzh timing, like EEG or eye-
tracking. So, when you find yourself mainly involvé in questions such as "how
“betrayed', on a level of 1 to 5, does our parteip feel?', or want to test efficacy of
immersive user-interfaces combining drag-and-dropefaviour for mobile com-
munication technology, E-Primé& may not be the platform of choice. For indeed,
the simple Windows event of “the user clicked on kon A' is not defined within

a second of work; whereas web-questionnaires areiliadibly easy to make using
simple websites.

However, we often find it useful (or sometimes justun) to add aspects of inter-
activity, say, one or two clickable objects, to owrell-timed experiments. Also,
it can be useful to have all the data + includingugstionnaires * regarding one

The Slide object

Slide objects are extremely useful because theyallyou to combine text, images,
sounds and movies in one and the same object. Inishchapter we will learn to
access the Slide, including its SlideStates and sobjects using InLine codes.

Remember that E-Basic is an object-oriented programmg language, and that
you can refer to properties and methods of partical objects using thedot opera-
tor. Likewise, you can also read or change propertiesid call methods of Slides
and their sub-objects.

Let's first consider the hierarchical structure o& Slide object. The figure below
shows a Slide object ("Slidel") with a particulati®State ("Default’) including
two sub-objects: a SlideText (‘Textl') and a Slidege (‘Imagel’).

When a Slide is created, E-Basic automatically dm@s a hierarchical object con-
sisting of the following elements:

"Default").BackColour=CColour("Red")

Note that we refer here to the subordinate Slide$ta?Default® via the property
States of the Slide object. The code demonstratemhto access the nested object
in E-Basic.

The method HitTest is typically used in conjunctionwith mouse input. If you pro-
vide some coordinates in pixels, the HitTest methodill return the String name
of a sub-object of Slide (e.g. a SlidelImage or ddglText) at the specified coordi-
nates. If no Slidelmage or SlideText object exisés$ the specified coordinates, an
empty String 2 is returned.

"Default").HitTest(400, 300)

DimtheSlideText As SlideText
Set theSlideText= CSlideText (Slidel.States("Default").Objects("Textl"))

So, in the first line we declare our temporary vaable of the type SlideText. Then,
in the second line we usé&etto make a reference to the particular SlideText @n

use the CSlideText casting function to interpret & Textl object as having the
data type SlideText (if you want to learn more abbcasting functions, check the

E-Basic help file).

Now, we can change, for instance, the BorderWidth the just referenced Slide-
Text (so in this example SlideText 2Text1° in thé@fault® state of 2Slidel°) by
adding the following line of code:

3

Similarly, you can also cast a Slidelmage, by sinyphdapting the variable declara-
tion and casting part. Here is an example:

DimtheSlidelmage As Slidelmage
Set theSlidelmage= CSlidelmage (Slidel.States("Default").Objects(“Imagel"))

Then, you may change, for instance, the filename sxciated with the image (so
in this example Slidelmage 2Imagel° in the 2Defaltstate of 2Slide1°), using this
line of code:

"newfile.omp"
As you can imagine, a similar Procedure is availabfor other sub-objects such

as Sounds and Movies. For more information aboutlgbroperties and methods
available for Slide sub-objects, please refer teetk-Basic Help file.

Accessing the mouse in E-Prirme

The mouseis an interesting device as soon as you would like add complicated
hand movements or include questionnaires in E-Prinfe In the Properties of
your Experiment, the mouse is activated by defauliyt its cursor is usually not
shown. To change this, simply set th&how Cursorproperty to Yes as indicated
in the figure below:

However, showing a mouse cursor is often annoyinghen you run an experiment
that depends on manual responses. So might it notlbetter to toggle the cursor
on and off, depending on the particular time poinin the experiment? Well, that
is a good idea and pretty easy to do.

To show the mouse cursor on the screen, use tBdhowCursormethod, like this:

True

And to hide it, use this code:

False

Programming user interactions

There are a number of situations where we may fettle need to combine mouse
input and Slide objects. These basically boil dowa two major possibilities:

1. You would like to show feedback immediately afta button or mouse click. Unless
an exit criterion is met, feedback should be contiously presented on the screen.

2. You would like to havenstant(not only following a button or mouse click) and
continuous online control over your Slide.

The sections below describe both basic setups ameir principles. Use them as
templates; they can easily be adapted to suit yawn needs.

Continuous feedback after mouse clicks

Refreshing a Slide object after a mouse click ismething you may want to do
when programming questionnaires, visual analogue ates, or other types of
mouse pointing-and-clicking tasks.

Imagine you would like to show some visual feedbadkimediately after a user
makes a left-button mouse click in a Slide objecand this Procedure should be
repeated again and again until the user clicks witthe other (right) mouse but-
ton. As feedback, the SlideText position should meyo the position of the mouse
cursor after each mouse click.

To implement this, we need three objects: a Labeal,Slide object, and an InLine
object. In addition, add a SlideText sub-object the default Slide state. See the
examples below.

Make sure to set the Slide Duration tmfinite and Terminate after the user made
a mouse click. Also set ShowCursor to Yes in tiegperimental properties.

If Slidel.InputMasks.Responses.Count> 0 Then

©Getthe mouse response

DimtheMouseResponseData As MouseResponseData

Set theMouseResponseData=_

CMouseResponseData (Slidel.InputMasks.Responses(1))

If theMouseResponseData.RESP = "1" Then
DimtheSlideText As SlideText
Set theSlideText=_

CSlideText (Slidel.States("Default").Objects("Textl"))
theSlideText.X =theMouseResponseData.Curso rX
theSlideText.Y =theMouseResponseData.Curso ry
Else

©EXitcriterion, stop the experiment
End
End If
End If

GoToShowsSlide

In this case, the Goto command at the bottom of theode creates a loop, which

triggers a continuous refreshing of the content athe Slide object each time the
user makes a mouse click.

B Make sure you set the Slide Duration to ®ote thatthere is still the pos-
sibility to log responses: simply set the Time Limto the value you prefer (i.e.
a value \0).

Also set ShowCursor toresin the experimental properties.

This is the content of the ProcessSlideResp InLirabject you need:

DimtheSlideText As SlideText
Do While (Clock.Read-Slidel.0OnsetTime)< 10000
Set theSlideText= CSlideText (Slidel.States("Default”).Objects("Textl"))
theSlideText.X=Mouse.CursorX
theSlideText.Y =Mouse.CursorY
Slidel.Draw
Display.WaitForVerticalBlank
Sleep 10
Loop

The Do-While Loop structure here repeats drawingi8él again and again, un-
til 10,000 ms (10 seconds) since the Slidel.OnsenTé has passed. However,
given that it is useless having faster loops thahd screen refresh rate, we de-
cided to add a Display.WaitForVerticalBlank statemeand a sleep command to
create a loop that is simply as fast as (but notstar than) the refresh rate of the
monitor.

B In case you also want to terminate the loop whever the user makes a
button press, simply changing the device's End Aot to Terminate will not

work. Instead, you have to add an additional criien to the loop checking
whether StimSlide.InputMasks.IsPending() isTrue. As soon as IsPending()
gets the valudralse you know that a response was made or the Time Liinwas

exceeded.

Tutorial X: A simple questionnaire

Let's program a simple Questionnaire in E-Prim® The ItemList determines
which questions and answers should be presented. &lparticipant is allowed
to make multiple selections. Selected items need be indicated by a black bor-
der.

DimOptl As SlideText

DimOpt2 AsSlideText

Set Optl= CSlideText (QuestSlide.States("Default").Objects("Optionl"))
Set Opt2= CSlideText (QuestSlide.States("Default").Objects("Option2"))

If QuestSlide.InputMasks.Responses.Count > 0 Then
DimtheMouseResponseData As MouseResponseData
Set theMouseResponseData=_

CMouseResponseData (QuestSlide.InputMasks.Responses(1))
Dim strHit As String
strHit=QuestSlide.States("Default").HitTest_
(theMouseResponseData.CursorX, theMouseRespon seData.CursorY)

©process strHit
©TODOinStep4
End If

Please add these lines of codes to the Inline objec

Step 4: Process the hit test data

Now, consider how to process the hit test data. ttie user clicked on Item1, we
would like to show some selection/deselection feedbk, by adjusting the Border-

Width of the respective SlideText object.

To toggle between selection and deselection add $kdines of code and remove
the comment related to Step 4:

If strHit= "Option1" Then
If Optl.BorderWidth= 0 Then
Optl.BorderWidth= 1
Else
Optl.BorderWidth= 0
End If
End If

Repeat these lines of code for Item2:

If strHit= "Option2" Then

If Opt2.BorderWidth= 0 Then
Opt2.BorderWidth= 1
Else
Opt2.BorderWidth= 0
End If
End If

Step 5: Decide when to refresh the Slide

In the final step we have to consider our exit crit®n. When do we want to refresh
the Slide object and when do we want to exit thergt? Well, the Slide object
should always be refreshed unless the hit test rale that the user clicked the OK-
btn object. So, we would like to jump back to thedReshSlide if strHit <\ 20OKbtn°:

If strHit<> "OKbtn" Then
GoToRefreshSlide
End If

What if the user clickedOK? Well, then the program proceeds to the end of the
TrialProc and will finish. But, wait a moment* In hat case, we may first want to
store the selections in theedat2 fileTo do soyreplacdhe If-Then statement men-
tioned above and add these lines of code to the emfdour InLine script:

If strHit<> "OKbtn" Then

GoToRefreshSlide
Else
C.SetAttrib "Option1Selected" , CStr (Optl.BorderWidth)
C.SetAttrib "Option2Selected" , CStr (Opt2.BorderWidth)
End If

That's it* Test whether your first questionnaire ifE-Prime® works appropriately.

Tutorial XI: A mouse tracking task

As a young student you are likely to have efficientotor control over your mouse,
but what happens when you become older? Well, itligely that your motor per-
formance will become impaired. In this tutorial weare going to program a mouse
tracking task that may be useful for calculating tices of motor (dis)ability.

This mouse tracking task is an adapted version oli¢ one-dimensional task
described by Riviere & Thakor (1996). As shown imé figure on the next page,

Dim CurrTarget As Slidelmage
Dim CurrCursor As Slidelmage
Set CurrTarget=_

CSlidelmage (TrackingSlide.States("Default").Objects("Square"))
Set CurrCursor=_
CSlidelmage (TrackingSlide.States("Default").Objects("Dot"))

These references allow us to later change thigositiorof the respective Slidelmages.

The only part of the code that should be added is@vn below:

Dim ClockNow As Long

Dim PeriodDur ~ As Single

Dimy As Single

Dim Amplitude As Integer

Amplitude= 20

PeriodDur= 2000 ©ms, duration of one period
Do While (TrackingSlide.InputMasks.IsPending())
ClockNow = Clock.Read

y= Sin ((ClockNow - TrackingSlide.OnsetTime)/PeriodDur* 2*pi)
CurrTarget.Y = (Display.YRes/ 2)-(Amplitude *y)
©move cursor

CurrCursor.Y =Mouse.CursorY
Display.WaitForVerticalBlank
TrackingSlide.Draw
Sleep 10
Loop

Let's study these lines of code thoroughly*

The most important structure is theDo While £ Loopstructure, which repeatedly
calls the TrackingSlide.Draw method while the mouseesponse is pending (i.e.
no mouse click given and time limit not yet exceedg.

The other important part relates to the lines startg with "CurrTarget.Y =', and
"CurrCursor.Y ='. Here we change the position of thSquare and Dot images in
the TrackingSlide object.

Because the target should move in a sinusoidal fash, we first calculatey, which

uses theSin() function in combination with the time passed (= GickNow - Track-
ingSlide.OnsetTime) and the duration of the periothere 2000 ms) in radials (i.e.
@ 2 @ pi) to produce a value between -1 and >1.

iy 4347
0.57 409
0—| | 384—| |
0 0.5 1 0 0.5 1
-0.5] 359
-1 334

B Note: the variable Duration in the example above $iaa fixed value
throughout the experiment. In such cases you migltonsider to declare a con-
stant instead, using theConst statement. See the E-Basic help file for more
information about the Const statement.

Exercises

* Add extra trials to the List of the questionmire in Tutorial X. Add an InLine
script to the beginning of the TrialProc to make ge that each question al-
ways starts showing all options deselected.

Disable the possibility of selecting optionl anaption2 at the same time, so
that the participant is forced to choose one out tfo. Draw a flowchart before
programming.

Now adapt the questionnaire in such a way thatd participant has to choose
one out of eight options. Draw a flowchart beforerpgramming.

The questionnaire you created can be useful asnanipulation check. Add

the questionnaire to the end of the Ego depletiorxperiment (Tutorial V,

Chapter Ill). Ask participants to rate on an 8-poits scale how tired, thought-
ful, excited, happy, worn out, sad/depressed, angand calm they feel at the
end of the film viewing task. Make sure the respomsis stored in the edat
file.

Download the fileE-primeQuestionnaire.e@m www.e-primer.com.This pro-
gram shows how you can present one or more sheetten questionnaire
items on a screen in E-Prime. Perfect for long questionnaires* The answers
given are automatically stored in the edat filede the attributesChosenOption
and ChosenOptD@sTo ensure a convenient structure in the edatdil the ques-
tionnaire was programmed in a roundabout way, neeaj many Lists, Proce-
dures and InLine (too complicated to explain heyreHowever, the only thing
you need to know for now is: Whenever the ProceduRainOneSheetOf10ltems
is executed, it presents the content of 11 consecatrows (one header > ten
items with their options) stored in theAllQuestionnaires&ist.

Adapt the content of the questionnaire to suitoyr own needs (e.g. copy-paste
a bunch of your favourite personality questionnaisg. In order to change the
text for the items, just change the content of thallQuestionnairesist (note
that row numbers 1-11, 12-22, 23-33, etc. will bespnted in separate sheets).
IltemIDs fields that are left empty will not be usedneither are option fields
that are left empty. Optionally, you can set the &8election field, when a par-
ticular item number should be preselected in advaec

Call the ProcedureRunOneSheetOfl10Iltenad the proper location (in a par-
ticular List) in your experiment and repeat thisor the number of sheets you
would like to present.

Experiment with changing the content of thllQuestionnaired.ist and run
the questionnaires*

Advanced exercises
Add additional frequency conditions (1 Hz, 2Hz ah4Hz) to the TrialList of

the experiment in Tutorial XI and adjust the codecsthat the value in Period-
Dur depends on the given attribute in the List.

Reference List

Baumeister, R.F., Bratslavsky, E., Muraven, M. &cE, D.M. (1998). Ego deple-
tion: Is the active self a limited resource3ournal of Personality and Social
Psychology'4, 1252.

Blais, C. (2008). Random without replacement is notandom: caveat emptor.
Behavior Research Methpd@, 961-968.

Duncan, J. & Humphreys, G.W. (1989). Visual searcand stimulus similarity.
Psychological Review,, 3%33.

Greenwald, A.G., McGhee, D.E. & Schwartz, J.L. (29 Measuring individual
differences in implicit cognition: The implicit as®ciation test.Journal of Per-
sonality and Social Psycholpgg, 1464.

G"th, W., Schmittberger, R. & Schwarze, B. (1982An experimental analysis of
ultimatum bargaining. Journal of Economic Behavior & Organization3&¥7-
388.

Luck, S.J. & Vogel, E.K. (1997). The capacity asual working memory for fea-
tures and conjunctions.Nature, 390, 279-280.

Riviere, C.N. & Thakor, N.V. (1996). Effects of agand disability on tracking tasks
with a computer mouse: accuracy and linearityournal of Rehabilitation Re-
search and DevelopmeB8 6-15.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002E-Prime User's Guide Psy-
chology Software Toosttsburgh, PA.

Simon, J.R. & Rudell, A.P. (1967). Auditory SR comafibility: The effect of an ir-
relevant cue on information processingJournal of Applied Psycholp§¥ 300.

Appendix: Overview of available E-Objects

Here we provide an overview of all E-Objects, lisg their main function and the

chapter in which the object is introduced. For a coplete overview of all proper-
ties of each E-Object, we refer you to the E-PrirBed documentation, which can
be downloaded from the E-Prime support page.

Procedure Used to determine the order of events in
an experiment.

List Contains rows of items with specific prot,Il,llI
perties (attributes). Lists usually call Pro-
cedures.

TextDisplay Displays one or more lines of text. I

ImageDisplay Displays pictures. Il

Slide Presents a combination of text, imagesl

movies and sound.

FeedbackDisplay Providespecific feedback based on thel
participant's response to objects presen-
ted earlier in the experiment flow.

MovieDisplay Displays a movie clip. [l

SoundOut Presents a sound file (wav/.mp3/.wma). Il

Soundin Records sounds. Not in this
book

Wait Waits for a specified time without chanHl

ging the visual output.

Icon

Name

Description Chapter

InLine

Used to add E-Basic script at a specifly/
location of the experiment flow.

Label

Indicates a particular location on théll
timeline (Procedure). The program can

‘jump' backward or forward to a Label, in

order to repeat or skip a part of the Pro-

cedure.

PackageCall

Contains reusable blocks of E-Bakiet in this

script written by users of E-Prime 2 (ofbook

ten used in Procedures which are used
repeatedly or for instance in connecting
equipment such as an eye-tracker to an

E-Primé experiment). As packages are

beyond the scope of this book, please

see the "E-Prime 2' documentation for a

more detailed description.

About the authors

Michiel M. Spap! is a cognitive psychologist at the Helsinki Instiite for Infor-

mation Technology in Finland. Since obtaining his FD at Leiden University in
2009, he has focused on interrelating the classicélnctions of the human mind:

showing the perception of action, the memory of cdrol, the emotions of prob-
lem-solving and the social aspect of individual codion. Methodologically, he
likes to tinker with machines and biology, workingvith big computers, trackpads,
eye trackers, tactors, Kinects, EEG, EMG, MEG aml @n. His favourite type of
study reheats a venerable psychological effect,@pg it with new tech and add-
ing neuro sauce, before serving it to the acadentable.

Rinus G. Verdonschotis trained as a psycholinguist specialized in agptl

linguistics and cognitive neuroscience. His main wd is in in the fields of

psycho- and neurolinguistics focusing on languager@duction, reading and
bilingualism. He has considerable practical expenmee working at diverse ex-
perimental labs (including EEG/fMRI) in different muntries. He enjoys testing
theory-driven hypotheses, writing scientific artiels about them and presenting
the results at international conferences. He alsonpys teaching students at
undergraduate and graduate levels and to collabozavith and learn from other

researchers.

Saskia van Dantzigvas trained as a cognitive psychologist and obtathker PhD
on the topic of embodied cognition. She currently erks as a senior scientist at
Philips Research (Eindhoven, the Netherlands), ddeping products and services
that support people to live a healthy life. She les to work at the crossroads of
psychology and technology, and believes that thiznebination leads to useful and
much needed innovations.

Henk van Steenbergenwas trained as an experimental psychologist at Hen
University in the Netherlands where he currently isssistent professor. He likes
to combine behavioural, physiological and neuroscigfic methods to study hu-
man behaviour, in particular the role of emotion ath motivation in driving goal-

Index

Abs 98

ACC 35

ActiveState 56, 62, 124, 134

Addition (>) 36, 96

Address book 149

And 82,117, 131, 165

Array 137, 143, 146, 154, 155, 177

Arrays of a user-defined data type
149

Assignment 94, 126

Attribute 25, 39, 42, 45, 47, 50, 52, 61,
62, 63, 64, 82, 83, 88, 103, 125, 134,
144,145,176, 199

Basic 75

Beep 105

Between-subject manipulations 80

Bit-depth 67, 73

Bitmap 53

Bits and bytes 186

Block 19, 23, 36, 38, 40, 63, 64, 159,
200

Boolean 93, 117

BorderColor 29

BorderWidth 29

Browser window 23

Buffer Mode 70

Buffer Size 70

c.GetAttrib 104

Cint 99

Clock.Read 106

Clock.Scale 22, 107
Code substitution 99, 115
Collection Mode 181
Combine conditional expressions 117
Combining Arrays and Lists 148
Comment 95, 157
Comment and uncomment blocks of
code 95
Comparing values 118
Comparison operators 118
Equal to (=) 40, 59, 118
Greater than (\) 118
Greater than or equal to (\=) 118
Less than (<) 30, 118
Less than or equal to (<=) 118
Not equal to (<\) 118
Conceptualising an experiment 19
Conditional expression 114, 115, 117,
141, 143
Continous online control 168
Continuous feedback after mouse
clicks 166
control>alt>shift 22, 27, 39
Conversion functions
Cint 99
Convert a String to a Single, 99
Convert a String to an Integer 99
Convert numerical variables to a
String 99
CSng 99
CStr 99

